Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JOR Spine ; 7(2): e1333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660017

RESUMEN

Background: Intervertebral disk (IVD) degeneration affects both humans and canines and is a major cause of low back pain (LBP). Mast cell (MC) and macrophage (MØ) infiltration has been identified in the pathogenesis of IVD degeneration (IVDD) in the human and rodent model but remains understudied in the canine. MC degranulation in the IVD leads to a pro-inflammatory cascade and activates protease activated receptor 2 (PAR2) on IVD cells. The objectives of the present study are to: (1) highlight the pathophysiological changes observed in the degenerate canine IVD, (2) further characterize the inflammatory effect of MCs co-cultured with canine nucleus pulposus (NP) cells, (3) evaluate the effect of construct stiffness on NP and MCs, and (4) identify potential therapeutics to mitigate pathologic changes in the IVD microenvironment. Methods: Canine IVD tissue was isolated from healthy autopsy research dogs (beagle) and pet dogs undergoing laminectomy for IVD herniation. Morphology, protein content, and inflammatory markers were assessed. NP cells isolated from healthy autopsy (Mongrel hounds) tissue were co-cultured with canine MCs within agarose constructs and treated with cromolyn sodium (CS) and PAR2 antagonist (PAR2A). Gene expression, sulfated glycosaminoglycan content, and stiffness of constructs were assessed. Results: CD 31+ blood vessels, mast cell tryptase, and macrophage CD 163+ were increased in the degenerate surgical canine tissue compared to healthy autopsy. Pro-inflammatory genes were upregulated when canine NP cells were co-cultured with MCs and the stiffer microenvironment enhanced these effects. Treatment with CS and PAR2 inhibitors mediated key pro-inflammatory markers in canine NP cells. Conclusion: There is increased MC, MØs, and vascular ingrowth in the degenerate canine IVD tissue, similar to observations in the clinical population with IVDD and LBP. MCs co-cultured with canine NP cells drive inflammation, and CS and PAR2A are potential therapeutics that may mitigate the pathophysiology of IVDD in vitro.

2.
Rheum Dis Clin North Am ; 50(2): 241-254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670723

RESUMEN

Patients with cancer considering immune checkpoint inhibitor (ICI) therapy often look for health information and peer support through online communities. The authors used social media content analysis to obtain the perspectives of patients receiving ICI treatment about immune-related adverse events (irAEs), with particular focus on rheumatological symptoms. The most reported rheumatic symptom was joint pain. Other commonly reported symptoms included muscle pain, joint stiffness, arthritis, myositis, bone pain, back pain, and tendon/ligament pain. A few users reported development of rheumatic diseases. The authors' analyses allowed for cataloging and assessment of patient and caregiver experiences with ICI therapy and rheumatic irAEs.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Enfermedades Reumáticas , Humanos , Enfermedades Reumáticas/tratamiento farmacológico , Enfermedades Reumáticas/inmunología , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Medios de Comunicación Sociales
3.
Blood Adv ; 8(1): 150-163, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37782774

RESUMEN

ABSTRACT: Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma, and patients who relapse on targeted therapies have poor prognosis. Protein arginine methyltransferase 5 (PRMT5), an enzyme essential for B-cell transformation, drives multiple oncogenic pathways and is overexpressed in MCL. Despite the antitumor activity of PRMT5 inhibition (PRT-382/PRT-808), drug resistance was observed in a patient-derived xenograft (PDX) MCL model. Decreased survival of mice engrafted with these PRMT5 inhibitor-resistant cells vs treatment-naive cells was observed (P = .005). MCL cell lines showed variable sensitivity to PRMT5 inhibition. Using PRT-382, cell lines were classified as sensitive (n = 4; 50% inhibitory concentration [IC50], 20-140 nM) or primary resistant (n = 4; 340-1650 nM). Prolonged culture of sensitive MCL lines with drug escalation produced PRMT5 inhibitor-resistant cell lines (n = 4; 200-500 nM). This resistant phenotype persisted after prolonged culture in the absence of drug and was observed with PRT-808. In the resistant PDX and cell line models, symmetric dimethylarginine reduction was achieved at the original PRMT5 inhibitor IC50, suggesting activation of alternative resistance pathways. Bulk RNA sequencing of resistant cell lines and PDX relative to sensitive or short-term-treated cells, respectively, highlighted shared upregulation of multiple pathways including mechanistic target of rapamycin kinase [mTOR] signaling (P < 10-5 and z score > 0.3 or < 0.3). Single-cell RNA sequencing analysis demonstrated a strong shift in global gene expression, with upregulation of mTOR signaling in resistant PDX MCL samples. Targeted blockade of mTORC1 with temsirolimus overcame the PRMT5 inhibitor-resistant phenotype, displayed therapeutic synergy in resistant MCL cell lines, and improved survival of a resistant PDX.


Asunto(s)
Linfoma de Células del Manto , Humanos , Ratones , Animales , Adulto , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Transducción de Señal , Inhibidores Enzimáticos/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
4.
J Immunol ; 210(9): 1257-1271, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36881867

RESUMEN

Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.


Asunto(s)
Hidróxido de Aluminio , COVID-19 , Humanos , Animales , Ratones , Inmunidad Mucosa , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Inmunización , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
5.
Anesthesiology ; 138(4): 403-419, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716430

RESUMEN

BACKGROUND: A clinically relevant mouse model of thoracic endovascular aortic repair-induced ischemic spinal cord injury has been lacking since the procedure was first employed in 1991. The hypothesis was that ligation of mouse intercostal arteries would simulate thoracic endovascular aortic repair-induced ischemic spinal cord injury and behavioral deficit. The aim was to create a mouse model of thoracic endovascular aortic repair-induced spinal cord hypoperfusion by ligating five pairs of mouse intercostal vessels. METHODS: Mice were divided into sham (n = 53) and ligation (n = 60) groups. The procedures called for double ligation of three pairs and single ligation of two pairs of thoracic intercostal arteries in adult C57BL/6 mice. A laser Doppler probe was used in vivo on the spinal cords and intercostal arteries to document the extent of arterial ligation and spinal cord hypoperfusion. The Basso Mouse Scale for Locomotion, histological studies, and electron microscopy demonstrated postligation locomotive and histopathological changes. RESULTS: Ligation induced a significant and instantaneous drop in blood flow in the intercostal arteries (% change; mean = -63.81; 95% CI, -72.28 to -55.34) and the thoracic spinal cord (% change; mean = -68.55; 95% CI, -80.23 to -56.87). Paralysis onset was immediate and of varying degree, with behavioral deficit stratified into three groups: 9.4% exhibited severe paralysis, 37.5% moderate paralysis, and 53.1% mild paralysis at day 1 (n = 32; P < 0.001). Mild and moderate paralysis was transient, gradually improving over time. Severe paralysis showed no improvement and exhibited a higher mortality rate (83%; n = 15 of 18) compared to moderately (33%; n = 6 of 18) and mildly (24%; n = 6 of 25) paralyzed mice (P < 0.001). The overall ligation group survival rate (84%; n = 46 of 55) was significantly lower than the sham group (100%; n = 48 of 48) with P = 0.003. CONCLUSIONS: The mouse model generates reproducible spinal cord hypoperfusion and accompanying histopathological ischemic spinal cord damage. The resulting anatomical changes and variable behavioral deficits mimic the variability in radiological and clinical findings in human patients.


Asunto(s)
Aneurisma de la Aorta Torácica , Procedimientos Endovasculares , Traumatismos de la Médula Espinal , Isquemia de la Médula Espinal , Adulto , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/cirugía , Isquemia de la Médula Espinal/diagnóstico por imagen , Isquemia de la Médula Espinal/etiología , Isquemia de la Médula Espinal/patología , Parálisis/etiología , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/etiología , Modelos Animales de Enfermedad , Procedimientos Endovasculares/efectos adversos
6.
PLoS Pathog ; 18(8): e1010764, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35969621

RESUMEN

Infections and disease caused by the obligate human pathogen Bordetella pertussis (Bp) are increasing, despite widespread vaccinations. The current acellular pertussis vaccines remain ineffective against nasopharyngeal colonization, carriage, and transmission. In this work, we tested the hypothesis that Bordetella polysaccharide (Bps), a member of the poly-ß-1,6-N-acetyl-D-glucosamine (PNAG/PGA) family of polysaccharides promotes respiratory tract colonization of Bp by resisting killing by antimicrobial peptides (AMPs). Genetic deletion of the bpsA-D locus, as well as treatment with the specific glycoside hydrolase Dispersin B, increased susceptibility to AMP-mediated killing. Bps was found to be both cell surface-associated and released during laboratory growth and mouse infections. Addition of bacterial supernatants containing Bps and purified Bps increased B. pertussis resistance to AMPs. By utilizing ELISA, immunoblot and flow cytometry assays, we show that Bps functions as a dual surface shield and decoy. Co-inoculation of C57BL/6J mice with a Bps-proficient strain enhanced respiratory tract survival of the Bps-deficient strain. In combination, the presented results highlight the critical role of Bps as a central driver of B. pertussis pathogenesis. Heterologous production of Bps in a non-pathogenic E. coli K12 strain increased AMP resistance in vitro, and augmented bacterial survival and pathology in the mouse respiratory tract. These studies can serve as a foundation for other PNAG/PGA polysaccharides and for the development of an effective Bp vaccine that includes Bps.


Asunto(s)
Infecciones por Escherichia coli , Tos Ferina , Animales , Humanos , Ratones , Péptidos Antimicrobianos , Biopelículas , Bordetella pertussis/genética , Escherichia coli , Ratones Endogámicos C57BL , Vacuna contra la Tos Ferina , Polisacáridos
7.
Am J Pathol ; 192(1): 56-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599880

RESUMEN

N6-methyladenosine (m6A), the most abundant internal modifier of mRNAs installed by the methyltransferase 13 (METTL3) at the (G/A)(m6A)C motif, plays a critical role in the regulation of gene expression. METTL3 is essential for embryonic development, and its dysregulation is linked to various diseases. However, the role of METTL3 in liver biology is largely unknown. In this study, METTL3 function was unraveled in mice depleted of Mettl3 in neonatal livers (Mettl3fl/fl; Alb-Cre). Liver-specific Mettl3 knockout (M3LKO) mice exhibited global decrease in m6A on polyadenylated RNAs and pathologic features associated with nonalcoholic fatty liver disease (eg, hepatocyte ballooning, ductular reaction, microsteatosis, pleomorphic nuclei, DNA damage, foci of altered hepatocytes, focal lobular and portal inflammation, and elevated serum alanine transaminase/alkaline phosphatase levels). Mettl3-depleted hepatocytes were highly proliferative, with decreased numbers of binucleate hepatocytes and increased nuclear polyploidy. M3LKO livers were characterized by reduced m6A and expression of several key metabolic transcripts regulated by circadian rhythm and decreased nuclear protein levels of the core clock transcription factors BMAL1 and CLOCK. A significant decrease in total Bmal1 and Clock mRNAs but an increase in their nuclear levels were observed in M3LKO livers, suggesting impaired nuclear export. Consistent with the phenotype, methylated (m6A) RNA immunoprecipitation coupled with sequencing and RNA sequencing revealed transcriptome-wide loss of m6A markers and alterations in abundance of mRNAs involved in metabolism in M3LKO. Collectively, METTL3 and m6A modifications are critical regulators of liver homeostasis and function.


Asunto(s)
Ritmo Circadiano/genética , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Homeostasis , Hígado/metabolismo , Metiltransferasas/metabolismo , Ploidias , Factores de Transcripción ARNTL/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Metilación de ADN/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Hígado/patología , Ratones Noqueados , Poliadenilación , Poliploidía , Proteínas Tirosina Quinasas/metabolismo , Transcriptoma/genética
8.
Cell Immunol ; 370: 104425, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34800762

RESUMEN

Asthma is an inflammatory lung disorder characterized by mucus hypersecretion, cellular infiltration, and bronchial hyper-responsiveness. House dust mites (HDM) are the most prevalent cause of allergic sensitization. Canonical and noncanonical inflammasomes are multiprotein complexes that assemble in response to pathogen or danger-associated molecular patterns (PAMPs or DAMPs). Murine caspase-11 engages the noncanonical inflammasome. We addressed the role of caspase-11 in mediating host responses to HDM and subsequent allergic inflammation using caspase-11-/- mice, which lack caspase-11 while express caspase-1. We found that HDM induce caspase-11 expression in vitro. The presence of IL-4 and IL-13 promote caspase-11 expression. Additionally, caspase-11-/- macrophages show reduced release of IL-6, IL-12, and KC, and express lower levels of costimulatory molecules (e.g., CD40, CD86 and MHCII) in response to HDM stimulation. Notably, HDM sensitization of caspase-11-/- mice resulted in similar levels of IgE responses and hypothermia in response to nasal HDM challenge compared to WT. However, analysis of cell numbers and cytokines in bronchiolar alveolar lavage fluid (BALF) and histopathology of representative lung segments demonstrate altered inflammatory responses and reduced neutrophilia in the airways of the caspase-11-/- mice. These findings indicate that caspase-11 regulates airway inflammation in response to HDM exposure.


Asunto(s)
Caspasas Iniciadoras/inmunología , Hipersensibilidad/inmunología , Neumonía/inmunología , Pyroglyphidae/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Genes (Basel) ; 12(7)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202311

RESUMEN

Transforming growth factor ß (TGFß) signaling plays an important role in skeletal development. We previously demonstrated that the loss of TGFß receptor II (Tgfbr2) in Osterix-Cre-expressing mesenchyme results in defects in bones and teeth due to reduced proliferation and differentiation in pre-osteoblasts and pre-odontoblasts. These Osterix-Cre;Tgfbr2f/f mice typically die within approximately four weeks for unknown reasons. To investigate the cause of death, we performed extensive pathological analysis on Osterix-Cre- (Cre-), Osterix-Cre+;Tgfbr2f/wt (HET), and Osterix-Cre+;Tgfbr2f/f (CKO) mice. We also crossed Osterix-Cre mice with the ROSA26mTmG reporter line to identify potential off-target Cre expression. The findings recapitulated published skeletal and tooth abnormalities and revealed previously unreported osteochondral dysplasia throughout both the appendicular and axial skeletons in the CKO mice, including the calvaria. Alterations to the nasal area and teeth suggest a potentially reduced capacity to sense and process food, while off-target Cre expression in the gastrointestinal tract may indicate an inability to absorb nutrients. Additionally, altered nasal passages and unexplained changes in diaphragmatic muscle support the possibility of hypoxia. We conclude that these mice likely died due to a combination of breathing difficulties, malnutrition, and starvation resulting primarily from skeletal deformities that decreased their ability to sense, gather, and process food.


Asunto(s)
Osteogénesis/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Esqueleto/anomalías , Factor de Transcripción Sp7/genética , Animales , Huesos/anomalías , Huesos/fisiopatología , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Integrasas/genética , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Transducción de Señal/genética , Esqueleto/diagnóstico por imagen , Esqueleto/metabolismo , Esqueleto/fisiopatología
10.
Brain Behav Immun ; 96: 28-39, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33989741

RESUMEN

Maternal infection during pregnancy is a known risk factor for offspring mental health disorders. Animal models of maternal immune activation (MIA) have implicated specific cellular and molecular etiologies of psychiatric illness, but most rely on pathogen mimetics. Here, we developed a mouse model of live H3N2 influenza A virus (IAV) infection during pregnancy that induces a robust inflammatory response but is sublethal to both dams and offspring. We observed classic indicators of lung inflammation and severely diminished weight gain in IAV-infected dams. This was accompanied by immune cell infiltration in the placenta and partial breakdown of placental integrity. However, indications of fetal neuroinflammation were absent. Further hallmarks of mimetic-induced MIA, including enhanced circulating maternal IL-17A, were also absent. Respiratory IAV infection did result in an upregulation in intestinal expression of transcription factor RORγt, master regulator of a subset of T lymphocytes, TH17 cells, which are heavily implicated in MIA-induced etiologies. Nonetheless, subsequent augmentation in IL-17A production and concomitant overt intestinal injury was not evident. Our results suggest that mild or moderately pathogenic IAV infection during pregnancy does not inflame the developing fetal brain, and highlight the importance of live pathogen infection models for the study of MIA.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Encéfalo , Femenino , Humanos , Subtipo H3N2 del Virus de la Influenza A , Ratones , Placenta , Embarazo
11.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495337

RESUMEN

Doxorubicin is a commonly used anticancer agent that can cause debilitating and irreversible cardiac injury. The initiating mechanisms contributing to this side effect remain unknown, and current preventative strategies offer only modest protection. Using stem-cell-derived cardiomyocytes from patients receiving doxorubicin, we probed the transcriptomic landscape of solute carriers and identified organic cation transporter 3 (OCT3) (SLC22A3) as a critical transporter regulating the cardiac accumulation of doxorubicin. Functional validation studies in heterologous overexpression models confirmed that doxorubicin is transported into cardiomyocytes by OCT3 and that deficiency of OCT3 protected mice from acute and chronic doxorubicin-related changes in cardiovascular function and genetic pathways associated with cardiac damage. To provide proof-of-principle and demonstrate translational relevance of this transport mechanism, we identified several pharmacological inhibitors of OCT3, including nilotinib, and found that pharmacological targeting of OCT3 can also preserve cardiovascular function following treatment with doxorubicin without affecting its plasma levels or antitumor effects in multiple models of leukemia and breast cancer. Finally, we identified a previously unrecognized, OCT3-dependent pathway of doxorubicin-induced cardiotoxicity that results in a downstream signaling cascade involving the calcium-binding proteins S100A8 and S100A9. These collective findings not only shed light on the etiology of doxorubicin-induced cardiotoxicity, but also are of potential translational relevance and provide a rationale for the implementation of a targeted intervention strategy to prevent this debilitating side effect.


Asunto(s)
Doxorrubicina/efectos adversos , Lesiones Cardíacas/inducido químicamente , Lesiones Cardíacas/tratamiento farmacológico , Terapia Molecular Dirigida , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Animales , Niño , Regulación de la Expresión Génica , Lesiones Cardíacas/fisiopatología , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/deficiencia , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Análisis de Secuencia de ARN
12.
Infect Immun ; 87(10)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31308083

RESUMEN

Bordetella bronchiseptica is an etiologic agent of respiratory diseases in animals and humans. Despite the widespread use of veterinary B. bronchiseptica vaccines, there is limited information on their composition and relative efficacy and on the immune responses that they elicit. Furthermore, human B. bronchiseptica vaccines are not available. We leveraged the dual antigenic and adjuvant functions of Bordetella colonization factor A (BcfA) to develop acellular B. bronchiseptica vaccines in the absence of an additional adjuvant. BALB/c mice immunized with BcfA alone or a trivalent vaccine containing BcfA and the Bordetella antigens FHA and Prn were equally protected against challenge with a prototype B. bronchiseptica strain. The trivalent vaccine protected mice significantly better than the canine vaccine Bronchicine and provided protection against a B. bronchiseptica strain isolated from a dog with kennel cough. Th1/17-polarized immune responses correlate with long-lasting protection against bordetellae and other respiratory pathogens. Notably, BcfA strongly attenuated the Th2 responses elicited by FHA and Prn, resulting in Th1/17-skewed responses in inherently Th2-skewed BALB/c mice. Thus, BcfA functions as both an antigen and an adjuvant, providing protection as a single-component vaccine. BcfA-adjuvanted vaccines may improve the efficacy and durability of vaccines against bordetellae and other pathogens.


Asunto(s)
Adhesinas Bacterianas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Antígenos Bacterianos/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Vacunas Bacterianas/administración & dosificación , Infecciones por Bordetella/prevención & control , Bordetella bronchiseptica/efectos de los fármacos , Factores de Virulencia de Bordetella/administración & dosificación , Animales , Infecciones por Bordetella/inmunología , Infecciones por Bordetella/microbiología , Bordetella bronchiseptica/inmunología , Bordetella bronchiseptica/patogenicidad , Perros , Femenino , Humanos , Inmunización , Inmunogenicidad Vacunal , Masculino , Ratones , Ratones Endogámicos BALB C , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/microbiología , Balance Th1 - Th2/efectos de los fármacos , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/microbiología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Células Th2/microbiología
14.
J Neuropathol Exp Neurol ; 77(11): 1039-1054, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239918

RESUMEN

The National Cancer Institute-led multidisciplinary Comparative Brain Tumor Consortium (CBTC) convened a glioma pathology board, comprising both veterinarian and physician neuropathologists, and conducted a comprehensive review of 193 cases of canine glioma. The immediate goal was to improve existing glioma classification methods through creation of a histologic atlas of features, thus yielding greater harmonization of phenotypic characterization. The long-term goal was to support future incorporation of clinical outcomes and genomic data into proposed simplified diagnostic schema, so as to further bridge the worlds of veterinary and physician neuropathology and strengthen validity of the dog as a naturally occurring, translationally relevant animal model of human glioma. All cases were morphologically reclassified according to a new schema devised by the entire board, yielding a majority opinion diagnosis of astrocytoma (43, 22.3%), 19 of which were low-grade and 24 high-grade, and oligodendroglioma (134, 69.4%), 35 of which were low-grade and 99 were high-grade. Sixteen cases (8.3%) could not be classified as oligodendroglioma or astrocytoma based on morphology alone and were designated as undefined gliomas. The simplified classification scheme proposed herein provides a tractable means for future addition of molecular data, and also serves to highlight histologic similarities and differences between human and canine glioma.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/veterinaria , Glioma/diagnóstico , Glioma/veterinaria , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Animales , Encéfalo/patología , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/metabolismo , Diagnóstico Diferencial , Perros , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioma/clasificación , Glioma/metabolismo , Filamentos Intermedios/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Médicos , Veterinarios
15.
Neuro Oncol ; 18(9): 1209-18, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27179361

RESUMEN

On September 14-15, 2015, a meeting of clinicians and investigators in the fields of veterinary and human neuro-oncology, clinical trials, neuropathology, and drug development was convened at the National Institutes of Health campus in Bethesda, Maryland. This meeting served as the inaugural event launching a new consortium focused on improving the knowledge, development of, and access to naturally occurring canine brain cancer, specifically glioma, as a model for human disease. Within the meeting, a SWOT (strengths, weaknesses, opportunities, and threats) assessment was undertaken to critically evaluate the role that naturally occurring canine brain tumors could have in advancing this aspect of comparative oncology aimed at improving outcomes for dogs and human beings. A summary of this meeting and subsequent discussion are provided to inform the scientific and clinical community of the potential for this initiative. Canine and human comparisons represent an unprecedented opportunity to complement conventional brain tumor research paradigms, addressing a devastating disease for which innovative diagnostic and treatment strategies are clearly needed.


Asunto(s)
Investigación Biomédica , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Modelos Animales de Enfermedad , Animales , Perros , Humanos , National Cancer Institute (U.S.) , Estados Unidos
16.
JAMA Neurol ; 72(3): 355-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25599342

RESUMEN

IMPORTANCE: Traumatic brain injury (TBI) is a significant public health concern that affects individuals in all demographics. With increasing interest in the medical and public communities, understanding the inflammatory mechanisms that drive the pathologic and consequent cognitive outcomes can inform future research and clinical decisions for patients with TBI. OBJECTIVES: To review known inflammatory mechanisms in TBI and to highlight clinical trials and neuroprotective therapeutic manipulations of pathologic and inflammatory mechanisms of TBI. EVIDENCE REVIEW: We searched articles in PubMed published between 1960 and August 1, 2014, using the following keywords: traumatic brain injury, sterile injury, inflammation, astrocytes, microglia, monocytes, macrophages, neutrophils, T cells, reactive oxygen species, alarmins, danger-associated molecular patterns, purinergic receptors, neuroprotection, and clinical trials. Previous clinical trials or therapeutic studies that involved manipulation of the discussed mechanisms were considered for inclusion. The final list of selected studies was assembled based on novelty and direct relevance to the primary focus of this review. FINDINGS: Traumatic brain injury is a diverse group of sterile injuries induced by primary and secondary mechanisms that give rise to cell death, inflammation, and neurologic dysfunction in patients of all demographics. Pathogenesis is driven by complex, interacting mechanisms that include reactive oxygen species, ion channel and gap junction signaling, purinergic receptor signaling, excitotoxic neurotransmitter signaling, perturbations in calcium homeostasis, and damage-associated molecular pattern molecules, among others. Central nervous system resident and peripherally derived inflammatory cells respond to TBI and can provide neuroprotection or participate in maladaptive secondary injury reactions. The exact contribution of inflammatory cells to a TBI lesion is dictated by their anatomical positioning as well as the local cues to which they are exposed. CONCLUSIONS AND RELEVANCE: The mechanisms that drive TBI lesion development as well as those that promote repair are exceedingly complex and often superimposed. Because pathogenic mechanisms can diversify over time or even differ based on the injury type, it is important that neuroprotective therapeutics be developed and administered with these variables in mind. Due to its complexity, TBI has proven particularly challenging to treat; however, a number of promising therapeutic approaches are now under pre-clinical development, and recent clinical trials have even yielded a few successes. Given the worldwide impact of TBI on the human population, it is imperative that research remains active in this area and that we continue to develop therapeutics to improve outcome in afflicted patients.


Asunto(s)
Lesiones Encefálicas/diagnóstico , Lesiones Encefálicas/terapia , Animales , Lesiones Encefálicas/metabolismo , Ensayos Clínicos como Asunto/métodos , Humanos , Inflamación/diagnóstico , Inflamación/metabolismo , Inflamación/terapia , Fármacos Neuroprotectores/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
17.
J Pathol Inform ; 3: 18, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22616030

RESUMEN

The extent to which histopathology pattern recognition image analysis (PRIA) agrees with microscopic assessment has not been established. Thus, a commercial PRIA platform was evaluated in two applications using whole-slide images. Substantial agreement, lacking significant constant or proportional errors, between PRIA and manual morphometric image segmentation was obtained for pulmonary metastatic cancer areas (Passing/Bablok regression). Bland-Altman analysis indicated heteroscedastic measurements and tendency toward increasing variance with increasing tumor burden, but no significant trend in mean bias. The average between-methods percent tumor content difference was -0.64. Analysis of between-methods measurement differences relative to the percent tumor magnitude revealed that method disagreement had an impact primarily in the smallest measurements (tumor burden <3%). Regression-based 95% limits of agreement indicated substantial agreement for method interchangeability. Repeated measures revealed concordance correlation of >0.988, indicating high reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA = 7.4, manual = 17.1). Evaluation of PRIA on morphologically complex teratomas led to diagnostic agreement with pathologist assessments of pluripotency on subsets of teratomas. Accommodation of the diversity of teratoma histologic features frequently resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA error was nonrandom and influenced by variations in histomorphology. File-size limitations encountered while training algorithms and consequences of spectral image processing dominance contributed to diagnostic inaccuracies experienced for some teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. Technical improvements may enhance diagnostic agreement, and consistent pathologist input will benefit further development and application of PRIA.

18.
Intravital ; 1(2): 95-106, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24078900

RESUMEN

The innate immune system is comprised of cellular sentinels that often serve as the first responders to injury and invading pathogens. Our basic understanding of innate immunity is derived from research conducted in peripheral lymphoid tissues. However, it is now recognized that most non-lymphoid tissues throughout the body are equipped with specialized innate immune cells that are uniquely adapted to the niches in which they reside. The central nervous system (CNS) is a particularly interesting compartment because it contains a population of post-mitotic cells (neurons) that are intolerant of robust, cytopathic inflammatory responses observed in many peripheral tissues. Thus, evolutionary adaptations have fitted the CNS with a unique array of innate immune sentinels that facilitate the development of local inflammatory responses but attempt to do so in a manner that preserves the integrity of its post-mitotic residents. Interestingly, studies have even suggested that CNS resident innate immune cells contribute to the homeostasis of this compartment and promote neural activity. In this review we discuss recent advances in our understanding of CNS innate immune sentinels and how novel imaging approaches such as intravital two-photon laser scanning microscopy (TPLSM) have shed light on these cells during states of health and disease.

19.
Toxicol Pathol ; 38(3): 429-51, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20430879

RESUMEN

Macrocyclic trichothecene mycotoxins encountered in water-damaged buildings have been suggested to contribute to illnesses of the upper respiratory tract. Here, the authors characterized the adverse effects of repeated exposures to roridin A (RA), a representative macrocyclic trichothecene, on the nasal airways of mice and assessed the persistence of these effects. Young, adult, female C57BL/6 mice were exposed to single daily, intranasal, instillations of RA (0.4, 2, 10, or 50 microg/kg body weight [bw]) in saline (50 microl) or saline alone (controls) over 3 weeks or 250 microg/kg RA over 2 weeks. Histopathologic, immunohistochemical, and morphometric analyses of nasal airways conducted 24 hr after the last instillation revealed that the lowest-effect level was 10 microg/kg bw. RA exposure induced a dose-dependent, neutrophilic rhinitis with mucus hypersecretion, atrophy and exfoliation of nasal transitional and respiratory epithelium, olfactory epithelial atrophy and loss of olfactory sensory neurons (OSNs). In a second study, the persistence of lesions in mice instilled with 250 microg/kg bw RA was assessed. Nasal inflammation and excess luminal mucus were resolved after 3 weeks, but OSN loss was still evident in olfactory epithelium (OE). These results suggest that nasal inflammation, mucus hypersecretion, and olfactory neurotoxicity could be important adverse health effects associated with short-term, repeated, airborne exposures to macrocyclic trichothecenes.


Asunto(s)
Moco/efectos de los fármacos , Micotoxinas/toxicidad , Mucosa Nasal/efectos de los fármacos , Rinitis/etiología , Tricotecenos/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Inmunohistoquímica , Inflamación/inducido químicamente , Inflamación/patología , Compuestos Macrocíclicos/administración & dosificación , Compuestos Macrocíclicos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Moco/metabolismo , Micotoxinas/administración & dosificación , Mucosa Nasal/patología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Tricotecenos/administración & dosificación
20.
J Vet Med Educ ; 36(1): 62-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19435991

RESUMEN

This Executive Summary provides the conclusions from the presentations and discussions at the conference Veterinarians in Biomedical Research-Building National Capacity, a meeting coordinated by the AAVMC and held at the National Institutes of Health (NIH), Bethesda, MD, August 1-4, 2007.


Asunto(s)
Investigación Biomédica , Selección de Profesión , Educación en Veterinaria , Veterinarios/psicología , Medicina Veterinaria , Investigación Biomédica/economía , Humanos , Calidad de Vida , Salarios y Beneficios , Estudiantes , Estados Unidos , Veterinarios/economía , Medicina Veterinaria/economía , Recursos Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...